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A B S T R A C T

Our analysis incorporates the geometrically nonlinear bending of the Euler‐Bernoulli ferromagnetic nanobeam
accounting for a size‐dependent model through assuming surface effects. In the framework of the flexomag-
netic phenomenon, the large deflections are investigated referring to von‐Kármán nonlinearity. Employing
the nonlocal effects of stress coupled to the gradient of strain generates a scale‐dependent Hookean stress–-
strain scheme related to the small scale. Taking into account the supports of the nanobeam in two cases, that
is, totally fixed and hinged, the deformations are predicted. A constant static lateral load is postulated uni-
formly along the length of the beam, which forces the deformation. As the analysis is based on the one‐
dimensional media, the electrodes are embedded so that they give off a transverse magnetic field creating a
longitudinal force. The newly developed mathematical model is computed by means of the differential quadra-
ture method together with the Newton‐Raphson technique. The computational section discusses and reveals
the numerical results in detail for the characteristics and parameters involved in the design of beam‐like mag-
netic nanosensors. As shown later, the conducted research presents that there is a strong linkage between the
surface effect and the flexomagneticity behavior of the bulk.
1. Introduction

Flexomagnetic coupling is between magnetic polarization and
strain gradient or reversely, elastic strain and magnetic field gradient.
The perception of the flexomagnetic effect dates back to not‐so‐distant
years, which can be a pervasive influence for all structures including
symmetrical and nonsymmetrical crystals. However, studies of flexo-
magneticity in solids are rare in bulk samples due to the small amount
of this effect. With the development of nanoscale technology, interest
in flexomagnetic has renewed; because the large strain gradient is
often manifested at the nanoscale, which leads to a strong flexomag-
netic effect. One of the attractive applications of piezomagnetic is
the extraction of energy from the mechanical vibrations of the environ-
ment in order to power micro‐and nanodevices. However, piezomag-
netic is limited to specific materials and is strongly influenced by
temperature, which does not exist in flexomagnetic. This feature can
be considered as a higher‐order effect than piezomagneticity. The gra-
dient size effect shows that the importance of the flexomagnetic effect
in micro‐and nanosystems is comparable to piezomagnetic and even
beyond. In addition, flexomagnetic, unlike piezomagnetic, is found
in any material with any symmetry. This means that compared to
piezomagneticity, which is inefficient and invalid in materials with
central symmetry, the effects of flexomagnetic are present in all biolog-
ical materials and systems. These features have led to a growing inter-
est and research in flexomagnetic in the last decade. As expected, in
the future the effect of piezomagnetic on nanomotors and nano mem-
ory has important applications, the flexomagnetic effect may also play
such an important role in the construction of these devices [1–9].

As a brief physical explanation of this effect, it can be mentioned
that by bending a crystal, the atomic layers are stretched inside it,
and it is clear that the outermost layer will have the most tension. A
magnetic field can be created into the crystal due to the movement
of ions as a result of tension differences between the different layers.
In other words, bending some materials creates a magnetic field,
which is called flexomagnetism.

The effect of flexomagnetic in nanoscale should be considered and
evaluated in light of several reasons, including [1–9]: a ‐ Flexomag-
neticity is a pervasive property of any structural symmetry compared
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Nomenclature

List of symbols
σxx Stress component
ɛxx Strain component
C11 Elasticity modulus
ν Poisson's ratio
m Mode number
z Thickness coordinate
Iz Area moment of inertia
L Length of the beam
ψ Magnetic potential
b Width of the beam

h Thickness of the beam
u Axial displacement of the mid‐plane
w Transverse displacement of the mid‐plane
q31 Component of the third‐order piezomagnetic tensor
g31 Component of the sixth‐order gradient elasticity tensor
f 31 Component of fourth‐order flexomagnetic tensor
a33 Component of the second‐order magnetic permeability ten-

sor
NMag In‐plane axial magnetic force
A Area of cross‐section of the beam

Fig. 1. A square magnetic material specimen connected to a magnetic system.
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to piezomagnetic, and therefore expands the choice of materials that
can be used for sensors and electro‐magneto‐mechanical actuators. b
‐ Reduced dimensions lead to a larger strain gradient, meaning that
the strain difference at smaller distances results in the larger strain gra-
dient. The small scale is introduced in nanotechnology and therefore
leads to an increase in the effect of flexomagnetism, which at the
nanoscale can compete with piezomagnetism. c ‐ A number of experi-
ments have reported strong flexomagnetic coupling constants that are
several times higher than those of theoretical estimates.

Utterly different properties can be revealed for body surfaces from
those dedicated to the interior [10] on account of unalike environmen-
tal conditions. At very small sizes, the importance of surface property
can be pivotally considerable owing to the high surface‐to‐volume
ratio. In spite of the significance of surface effects at the mesoscale,
it can be responsible as a size‐dependent property. Gurtin and Mur-
doch [11,12] posed a mathematical schema in terms of a continuum
elasticity framework involving effects of the surface, where the surface
was assumed as a virtual layer with zero thickness concerning a math-
ematical layer, in which the membrane has dissimilar material features
and characteristics and underlying the layer as an entirely bonding
with the bulk.

By an exact look at the literature, the extensity can be found in
studies of surface effects phenomena with electro‐magneto‐elastic cou-
pling [13–18]. However, the study of the flexomagnetic effect does
exist in none of them, and the need to examine it is quite obvious
which merits an investigation between surface effect and flexomag-
neticity. Furthermore, mathematical studies on the impact of flexo-
magneticity on micro/nanostructures have been extended slowly
hitherto [19–26]. Despite the attention to this issue in recent years,
flexomagnetism has still many questions, ambiguities, and unresolved
issues. According to the literature, it was found and confirmed that the
surface effects can strongly and directly affect the electro‐magneto‐
elastic coupling in an electro‐elastic nanomaterial. For this reason,
we were persuaded to theoretically consider the surface effect on the
flexomagneticity as a higher‐order coupling effect in ferrite nanostruc-
tures. In this research, while re‐introducing the flexomagnetic effect
and the relations governing its static bending, theoretical discussions
on the subject are presented considering the effect of the surface layer.
Specifically, a theoretical explanation of the effect of the surface layer
on the flexomagnetic effect is given and the reason for its importance
in nanoscale systems is stated. Noted that the effects of surface residual
stress are eliminated in this paper and the surface energy alone has
been investigated. After explaining the physical model of the theory,
the governing relations are solved using the numerical method of dif-
ferential quadrature and specifically the Newton‐Raphson method.
Finally, the potential effects of the surface layer on the flexomagnetic
effect are represented.
2

2. Mathematical model

Regarding Fig. 1, the magnetic nanomaterial specimen in the form
of a rectangular nanobeam with initial length L and height/thickness h
is schematically discussed in an orthogonal coordinate system. The
left‐most end of the beam is postulated as the location of the rectangu-
lar coordinate system. Two flexible electrodes are covered and
attached to the top and bottom transversal surfaces of the beam, which
are connected to an ampere meter. These electrodes produce a lateral
magnetic field.

The engineer's beam theory (Euler–Bernoulli beam) will here
describe how the beam nodes move after deformations and displace-
ments [23–26]

u1 x; zð Þ ¼ u xð Þ � z
dw xð Þ
dx

ð1Þ

u3 x; zð Þ ¼ w xð Þ ð2Þ
Basic constitutive equations of the present problem were also

argued in the literature as [23–26],

dNxx

dx
¼ 0 ð3Þ

d2Mxx

dx2 þ d2Txxz

dx2 þ N0
xx
d2w
dx2 ¼ 0 ð4Þ

The nonlocal strain gradient size‐dependent model [27–36] has
advantages in contrast to Eringen's nonlocal elasticity theory
[37–40] and coupled stress/strain gradient approaches [41–47] which
contain one length scale factor only. Thus, the nonlinear nonlocal
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strain gradient static elasticity bending model of flexoferroic beam‐like
magnetic nanomaterial involving flexomagnetic effect is made avail-
able by use of [48]

C11A
d2u
dx2 þ

d2w
dx2

dw
dx

� l2
d4u
dx4 þ

d4w
dx4

dw
dx

þ 3
d3w
dx3

d2w
dx2

� �� �
¼ 0 ð5Þ

�g31h
d4w
dx4 þ q31ψ d2w

dx2 � p� μ �g31h
d6w
dx6 þ q31ψ d4w

dx4 � d2p
dx2

� �

�μ11CA du
dx þ 1

2
dw
dx

� 	2h i
d4w
dx4 þ C11Aμl

2 d3u
dx3 þ d3w

dx3
dw
dx þ d2w

dx2

� �2
� �

d4w
dx4

�μC11A d2u
dx2 þ dw

dx
d2w
dx2

� �
d3w
dx3 þ C11Aμl

2 d4u
dx4 þ 3 d3w

dx3
d2w
dx2 þ dw

dx
d4w
dx4

� �
d3w
dx3

�μC11A d4u
dx4 þ dw

dx
d4w
dx4 þ 3 d3w

dx3
d2w
dx2

� �
dw
dx þ C11A du

dx þ 1
2

dw
dx

� 	2h i
d2w
dx2

þC11Aμl
2 d6u

dx6 þ dw
dx

d6w
dx6 þ 5 d5w

dx5
d2w
dx2 þ 10 d4w

dx4
d3w
dx3

� �
dw
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�C11Al
2 d3u

dx3 þ d3w
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dw
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dx2

� �2
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d2w
dx2 þ C11A d2u
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d2w
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� �
dw
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�Iz C11 þ q231
a33

� �
d4w
dx4 � l2 d6w

dx6

� �
� C11Al

2 d4u
dx4 þ 3 d3w

dx3
d2w
dx2 þ dw

dx
d4w
dx4

� �
dw
dx ¼ 0

ð6Þ
Along with the longitudinal direction, the surface effect is impor-

tant. This issue can be mathematically modeled by the following
one‐dimensional relation [49],

σS ¼ CS
11ɛ

S
11 ð7Þ

in which CS
11 denotes the surface elasticity modulus which the value

may be found either based on experiments or atomic simulations
[50,51]. Noted that, in this paper, the upper index S introduces con-
stants relate to the surface layer.

The effective axial and flexural rigidities showed by Eq. (7) can be
calculated as [52–56],

C�
11I

�
z ¼ C11

bh3

12
þ CS

11
bh2

2
þ h3

6

� �
ð8Þ

Moreover, the effective magnetic properties can be written as
follows,

f �11 ¼ f 11 þ f S11 ð9Þ

q�31 ¼ q31 þ qS31 ð10Þ

a�33 ¼ a33 þ aS33 ð11Þ
Accounts for the surface effect, the governing differential equations

which define the large deflections of the magnetic beam‐like nanoma-
terial can be conducted as

C�
11A

� d2u
dx2 þ

d2w
dx2

dw
dx

� l2
d4u
dx4 þ

d4w
dx4

dw
dx

þ 3
d3w
dx3

d2w
dx2
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¼ 0 ð12Þ
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3

3. Solution of equations

Let us apply an accurate and convenient numerical solution
method, namely the differential quadrature method (DQM), to transfer
the nonlinear differential equations displayed by Eqs. (12, 13) into
algebraic ones to advance the solution [57–66]. In comparison with
other numerical techniques employed to solve complicated differential
equations, such as finite difference, finite element, and dynamic relax-
ation, the differential quadrature technique provides low computa-
tional cost and simple procedure.

For a one‐dimensional problem, the first‐order derivative of vari-
ables is carried out as

du
dx

xið Þ ¼ ∑
N

k¼1
axikU xkð Þ; i ¼ 1; 2;:::;N ð14aÞ

dw
dx

xið Þ ¼ ∑
N

k¼1
axikW xkð Þ; i ¼ 1; 2;:::;N ð14bÞ

where the number of grid points along the axial direction is
depicted by N. Moreover, ax is expressed as follows,

axij ¼ R xið Þ
xi�xjð ÞR xjð Þ for i–j

axii ¼ � ∑
N

j¼1;–i
axij; i; j ¼ 1; 2;:::;N










ð15Þ

in which

R xið Þ ¼
YN

j¼1;–i

xi � xj
� 	 ð16Þ

In addition, higher‐order derivatives can be written as

d nð Þu
dx nð Þ xið Þ ¼ ∑

N

k¼1
C nð Þ
ik U xkð Þ ð17aÞ

d nð Þw
dx nð Þ xið Þ ¼ ∑

N

k¼1
C nð Þ
ik W xkð Þ ð17bÞ

where C nð Þ shows a weighting equation which can be defined as follows,

C 1ð Þ ¼ ax ð18Þ

C nð Þ
ij ¼ n axijC

n�1ð Þ
ii � C n�1ð Þ

ij
xi�xj

� �
for i–j

C nð Þ
ii ¼ � ∑

N

j¼1;–i
C nð Þ
ij ; i; j ¼ 1; 2;:::;N











ð19Þ

Another issue that needs to be mentioned is how to mesh the beam.
Different methods have been proposed for distributing nodes in the
mesh network. The simplest type of meshing is the uniform distribu-
tion of nodes on the surface of the beam with equal distances. This
type of meshing, although simple, is often less accurate. A high effi-
cient mesh point can be obtained by embedding Chebyshev–
Gauss–Lobatto relation as,

xi ¼ L
2

1� cos
i� 1
N � 1

π

� �� �
; i ¼ 1; 2; :::;N ð20Þ

In fact, this type of meshing leads to more stability of the equations
and the speed of convergence of the results.

Implementation of the DQM presents Eqs. (12, 13) in the following
scheme,

C�
11A

� ∑
N

k¼1
C 2ð Þ
ik U xkð Þþ ∑

N

k¼1
C 2ð Þ
ik W xkð Þ� ∑

N

k¼1
C 1ð Þ
ik W xkð Þ� l2� ∑

N

k¼1
C 4ð Þ
ik U xkð Þ

��

þ∑
N

k¼1
C 4ð Þ
ik W xkð Þ� ∑

N

k¼1
C 1ð Þ
ik W xkð Þþ3� ∑

N

k¼1
C 3ð Þ
ik W xkð Þ� ∑

N

k¼1
C 2ð Þ
ik W xkð Þ

��
¼ 0

ð21Þ



Table 1
Providing small deflections for a square macro beam (E = 210GPa, h = 10 mm,
p = 100 N/m, CC).

L/h Linear deflections (mm)

FECS Present (DQM) Diff%

5 0.000272 0.000198 37.37%
10 0.001648 0.001585 3.97%
15 0.005243 0.005348 1.96%
20 0.012173 0.012680 3.99%
25 0.023553 0.024765 4.89%
30 0.040499 0.042790 5.35%
35 0.064131 0.067956 5.62%
40 0.095561 0.101440 5.79%
45 0.135907 0.144432 5.90%
50 0.186285 0.198126 5.97%

Table 2
Providing large deflections for a square macro beam (E = 210GPa, h = 10 mm,
p = 0.5kN/m, CC).

L/h Nonlinear deflections (mm)

FECS Present (DQM) Diff%

5 0.001362 0.000990 37.57%
10 0.008242 0.007924 4.01%
15 0.026218 0.026744 1.96%
20 0.060869 0.063371 3.94%
25 0.117767 0.123616 4.73%
30 0.202465 0.212890 4.89%
35 0.320469 0.335536 4.49%
40 0.477106 0.493667 3.35%
45 0.677421 0.685871 1.23%
50 0.925881 0.906756 2.10%
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To complete the formulation, Eqs. (21, 22) are merged with the

boundary conditions. These end conditions are exerted as follows,
Clamped (C): U ¼ W ¼ 0; Mx–0 : x ¼ 0; L
Simply‐supported (S): U ¼ W ¼ Mx ¼ 0 : x ¼ 0; L
Then, by inserting the introduced end conditions in Eqs. (21, 22),

nonlinear algebraic matrix equations can be obtained.
The accuracy and convergence rate of the Newton‐Raphson (NR)

technique is quite high, leading to performing it on the current prob-
lem [67,68]. In this approach, there should be primary guesses (X0)
whose amounts directly regulate the convergence rate. The first loop
can be written as

X1 ¼ X0 � J�1 � A ð23Þ
4

in which A exhibits a N × 1 matrix, J shows Jacobian that is a
matrix of N × N.

J i; jð Þ ¼ @ei
@xj

i; j ¼ 1; :::;N ð24Þ

A i;1ð Þ ¼ ei X0ð Þ i ¼ 1; :::;N ð25Þ
where e is dedicated to the nonlinear equilibrium equations. In a point
of fact, Eq. (23) should be in an iterative form as

Xnþ1 ¼ Xn � J�1 � A ð26Þ
in which the iteration number n determines the convergence speed.

The desired accuracy can be obtained based on a few iterations. As a
consequence, Eq. (26) results in values of displacements along the x
nd z axes in which the deflections are related to the transverse axis.

4. Solution method validation

The method used to solve the nonlinear equations should be
checked prior to the parametric study in order to assess its efficiency.
Based on Tables 1 and 2, some results are tabulated which are reported
from a finite element commercial software (FECS) and present study
for linear and nonlinear deflections of an isotropic local beam along-
side simple and clamped supports. It is borne to keep it in mind that
the convergence rate of the present solution method is N = 9. To
achieve large deflections, the chosen load is much bigger than that
of the first comparison. The validation criterion is the length‐to‐
thickness ratio, which is selected in a range from a thick beam up to
a thin one.

The observation of these two tabulated examples says that in the
case of large deflections the agreement is further passable particularly
in terms of thinner beams. Of course, it should be logical as the present
work used thin beam theory without involving shear deformations



Fig. 2. Force-displacement diagram for the present model in comparison with
FECS (L/h = 10, h = 1 mm, CC).

Table 3
Employed structural properties.

Bulk (CoFe2O4) Surface layer

C11 = 286 GPa CS
11 = 35.3 N/m

f31 = 10−9 N/A f S31 = 10-9 N/A
q31 = 580.3 N/A.m qS31 = 3.4 N/A.m
a33 = 1.57 × 10−4 N/A2 aS33 = 1.4 × 10−4 H/m
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and, on the other side, FECS has the advantage of using shear deforma-
tions. More importantly, FECS considers large displacements in three
axes, but the present formulation examines nonlinearity in the trans-
verse axis respecting the von‐Kármán theorem. Furthermore, the pre-
sent mathematical model is based on the one‐dimensional analysis;
however, FECS is regarding three‐dimensional problems. Regardless
of these, FECS's outcomes vary due to lots of options in the solution,
such as type of element, number of elements, and size. Consequently,
a full matching among the results is not reasonable and the difference
percentages (Diff% ¼ FECS�DQMj j

DQM � 100) can be desirable. However, to
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give some information regarding FECS used here, it can be said that
a high‐quality standard Tetrahedral element with an average element
size of 0.226 h was practiced.

In order to more prove the validity of the present nonlinear NR
algorithm, a nonlinear force–displacement diagram in comparison
with FECS is provided in what follows. Our model based on the classi-
cal beam theory excluding shear deformations can be used while
deflections are less than equal to 20 percent of thickness, see Fig. 2.
More than this value of deflection, a shear deformation model is so
vital to be used.

5. Practical examples

The most fundamental concept in terms of nanoscale problems con-
sists of establishing nanosize effects by formulating between contin-
uum mechanics and nonlocal and also strain gradient approaches
proposed theoretically. The concept of nonlocality expands and indi-
cates interaction between atoms based on Eringen's postulations. It is
discussed that stress at a point/atom under consideration relates not
only to strain at that point but all atoms’ strains in that media. This
is mathematically meaningful by the Laplace operator which computes
an average of a quantity in a planar domain. In addition to this, one
can measure the large strain gradient of atoms by the use of well‐
known strain gradient elasticity models given by literature. These
properties arrive from the bulk of a nanostructure. Another effective
factor implies a nanostructure can behave differently against a macro-
scale and that this operator can be the effects of the exterior surface. Of
course, surface effects happen on a macroscale though, this is eminent
and more explicit on a small scale because of the large ratio of surface
to volume. As a matter of fact, [10–12] showed that the surface of
materials reacts differently from bulk.

The focus of this section is to surface effects on the flexomagnetic
behavior of the cobalt iron oxide as a ferromagnetic material with
the structural properties assigned in Table 3 [69–72]. And three cate-
gories, that is, a piezo‐flexomagnetic (PFM) actuator, piezomagnetic
(PM) and an ordinary nanobeam (NB) are examined.

In the first study of the correlation between flexomagnetic and sur-
face effects, Figs. 3a and 3b are drawn with changes in nonlocal and
strain gradient length scale (SGLS) coefficients. The aim here is that
the surface layer affects the flexomagnetic behavior at smaller or lar-
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urface effects (Ψ = 1 mA, L/h = 10, p0 = 0.1 N/m, l = 1 nm, CC).
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ger values of these two small‐scale parameters. In the first figure,
which relies on the nonlocal parameter, it can be clearly seen that as
we move towards the selection of larger values for the nonlocal param-
eter, the nonlocal parameter is effective in highlighting the flexomag-
netic effect, and it can increase the flexomagnetic response of the
material even in the attendance of the surface effect. This result cannot
be seen in Fig. 3b, and in fact, the boundary conditions have a direct
effect on this achievement. Since the purpose of this study is to inves-
tigate the relationship between surface effect and flexomagnetic
response, we will not interpret the results of the surface layer on the
mechanics of the nanostructure. For example, the effect of the surface
layer has led to a reduction in deflections and, as a result, greater stiff-
ness of the material, which has been thoroughly discussed in the
6

research background. Other results considered according to these
two figures show a growth in the flexomagnetic effect while the sur-
face effect is not examined. This is because, as mentioned before, the
effect of the surface leads to the stiffness of the material and as a result,
deduces the deflections. As the deflections decrease, the flexomagnetic
effect will be less important. In fact, if the nanostructure under study
has inestimable surface effects, the flexomagnetic effect on that mate-
rial will be larger.

In this section, by presenting Figs. 4a and 4b, there will be a similar
study of Figs. 3a and 3b, with the difference that here the changes of
the SGLS are evaluated. Since in the previous figures we have come to
the conclusion that in larger values of the nonlocal parameter, the flex-
omagnetic effect becomes more dominant despite the surface effect.
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This was because increasing the nonlocal parameter reduced the stiff-
ness of the material, resulting in a larger strain gradient. Since the
behavior of the SGLS parameter is the opposite of the nonlocal param-
eter, it means that its enhancement leads to an increase in the stiffness
of the material and, as a rule, the flexomagnetic effect should be
underestimated, which is simply shown in Fig. 4a. However, it cannot
be found in Fig. 4b.

By preparing Figs. 5a and 5b, we consider the changes in transverse
static load to find the effect of these changes on the connection
between the surface layer and the flexomagnetic effect. As can be
vividly seen, in the range of larger nonlinear deflections, the surface
effect is more outstanding in particular when the loading is becoming
greater in size.In the first figure, the difference between the results
when the surface effect is examined with when it is omitted is greater
than those in the second figure. In fact, the first plot, which is prepared
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for the boundary condition of two clamped edges, shows that the lar-
ger the transverse load, the more substantial the surface effect and its
relationship to the flexomagnetic effect. However, if the two ends of
the nanobeam use the hinge boundary condition, the differences will
not increase significantly despite the larger static loads.

At the end of the results section, by presenting two figures, Figs. 6a
and 6b, which show the variations in the magnetic potential within the
horizontal axis, we will evaluate any relationship between the surface
effect and flexomagnetic at different values of the external magnetic
ampere. In the first figure, no serious result is obtained in the bound-
ary conditions of two fixed edges. However, by examining the second
figure, which is related to the boundary conditions of two hinged
edges, it can be seen that while the problem involves the surface effect,
increasing the magnetic potential values leads to a very small reduc-
tion in the difference between results of PFM and PM. In fact, very lit-
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tle effect resulted from variation of the magnetic potential on the flex-
omagnetic effect can be observed. Nevertheless, as a general conclu-
sion, it can be stated that changes in the magnetic potential do not
have a noteworthy impact on the relationship between the flexomag-
netic behavior of the bulk and the surface layer effect. On the other
hand, by comparing the two figures, it can be concluded that the
downward trajectory of the results is faster due to the increase of
the magnetic potential in the hinge boundary conditions.

6. Conclusions

The work reported the effects of the surface layer on the various
significance items included in a ferromagnetic structure for providing
8

the flexomagnetic response. On the basis of the obtainable data of a
flexoferroic material, an appropriate consideration was performed to
predict the surface layer effect on the flexomagneticity. Euler‐
Bernoulli beam assumption was used to find out large deflections of
clamped–clamped and pinned–pinned nanoscale beams. When the
nonlocal strain gradient model is applied, it can generate the stress
nonlocality and large gradient of atoms in the nanoscale. When the
magnetic field gradient is applied, one can observe the converse flex-
omagnetic effect which was our case in this article. The contribution of
the nonlinear von‐Kármán strain aided us to mathematically model the
problem. With the substitution of the differential quadrature method,
which has been widely used and its precision has been entirely
approved, the partial differential relations have been converted into
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algebraic equations. Thereafter, the algebraic relations were solved
vis‐à‐vis the Newton‐Raphson technique to compute the large deflec-
tions. Further, investigations were warranted via a simple structure
using a finite element commercial software before the results and dis-
cussion section. This study argued and demonstrated huge potential in
affecting the flexomagnetic effect based on the surface layer. The suit-
able concluded remarks developed by this research will help the
designers of small scale actuators and sensors, where some of them
are indicated below,

• If the end conditions are selected as less flexible, and values of non-
local parameter or SGLS are respectively, big and small enough, the
surface layer can affect and develop a further flexomagnetic
response.

• In general, the more dominant the surface effect, the stiffer the
material, then the less important the flexomagnetic effect.

• The less flexible the end conditions, the remarkable the surface
effect and its coherency with flexomagnetic effect if the lateral load
increases.

• There was found no evidence to show that the relationship between
the effect of the surface layer and the flexomagnetic influence can
be affected by changes in values of the external magnetic ampere.
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