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Abstract This research work performs the first time exploring and addressing the flexomagnetic property in
a shear deformable piezomagnetic structure. The strain gradient reveals flexomagneticity in a magnetization
phenomenon of structures regardless of their atomic lattice is symmetrical or asymmetrical. It is assumed
that a synchronous converse magnetization couples both piezomagnetic and flexomagnetic features into the
material structure. The mathematical modeling begins with the Timoshenko beam model to find the governing
equations and non-classical boundary conditions based on shear deformations. Flexomagneticity evolves at a
small scale and dominant at micro/nanosize structures. Meanwhile, the well-known Eringen’s-type model of
nonlocal strain gradient elasticity is integrated with the mathematical process to fulfill the scaling behavior.
From the viewpoint of the solution, the displacement of the physical model after deformation is carried out as
the analytical solution of the Galerkin weighted residual method (GWRM), helping us obtain the numerical
outcomes on the basis of the simple end conditions. The best of our achievements display that considering
shear deformation is essential for nanobeams with larger values of strain gradient parameter and small amounts
of the nonlocal coefficient. Furthermore, we showed that the flexomagnetic (FM) effect brings about more
noticeable shear deformations’ influence.

Keywords Flexomagneticity · Buckling analysis · Timoshenko nanobeam · NSGT · GWRM

List of symbols

εxx Axial strain
γxz Shear strain
ηxxz Gradient of the axial elastic strain
C11 Elastic modulus
σxx Axial stress
τxz Shear stress
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f31 Component of the fourth-order flexomagnetic coefficients tensor
a33 Component of the second-order magnetic permeability tensor
q31 Component of the third-order piezomagnetic tensor
ξxxz Component of the higher-order hyper-stress tensor
Bz Magnetic flux
Hz Component of magnetic field
g31 Influence of the sixth-order gradient elasticity tensor
q Third-order piezomagnetic tensor
a Second-order magnetic permeability tensor
g sixth-order gradient elasticity tensor
C Fourth-order elasticity coefficient tensor
f Fourth-order flexomagnetic tensor
r Fifth-order tensor
ui (i = 1, 3) Displacement in the x and z directions
u and w Axial and transverse displacements of the mid-plan
φ Rotation of beam elements around the y axis
z Thickness coordinate
ψ External magnetic potential

 Magnetic potential function
l (nm) Strain gradient length scale parameter
μ (nm)2 = (e0a)2 Nonlocal parameter
Xm Residue of the equations
ks Shear correction factor
Nx Axial stress resultant
Qx Shear stress resultant
Mx Moment stress resultant
Txxz Hyper stress resultant

1 Introduction

Magnetic properties are divided into different categories: diamagnetic, paramagnetic, ferrimagnetic ferromag-
netic materials, etc. Ferromagnetic materials are magnetic structures with high permeability such as cobalt
and iron Ferromagnetic materials are divided into hard (e.g., CoFe2O4) and soft groups (e.g. Fe3O4). Hard
magneticmaterials arematerials that becomemagnetized hardly ever; that is, a strongmagnetic field is required
to create magnetism in them. As these materials become magnetized hardly, they also lose scarcely ever their
magnetic properties. These structures are suited to be used as a steady magnetic state such as sensors and
measuring instruments. Conversely, soft magnetic structures are easily magnetized and just as easily lose their
magnetic properties [1–5]

CoFe2O4 magnetic nanostructures have received particular attention among different spinel ferrites, such
as exclusive physical features excellent mechanical hardness, significant magnetostrictive coefficient, high
coercivity, moderate saturation magnetization, etc. [6,7] From a technological perspective, these characteristic
properties cause the structure described above entirely significant, leading to its application in gas sensors,
magnetic hyperthermia, biosensors, ferrofluid technology, and high-density magnetic media [8–11].

A lot of practical applications can be observed from the phenomenological magneto-mechanical coupling
of crystals. Structures with reduced dimensions functioning as nano configurations are affected principally and
importantly from this type of coupling. It is already known that the connection between induced magnetization
and strain gradient is mainly significant among smallsize structures Flexomagneticity (FM) is a phenomenon
that exists during the magneto-mechanical coupling regarding the magnetic field and strain gradient [12–
14]. Compared to the flexomagneticity, flexoelectricity influence appears in crystalline structures between the
electric field and strain gradient (converse effect) [15–33]. The physical action of FM makes it competent to
the economic outlook The advantage of FM property gives a possible way of improving biosensor efficiency

The contemporary decade has been witnessed plenty of research work performed on the mechanics of
piezomagnetic (PM) nano configurations [34–42]. However, the availability of FM in scientific papers is seen
hardly and scarcely [43–52]. In the aforementioned reports presented on FM for PM structures, in order to
model the domain displacement field, all available references employed the concept of the Euler–Bernoulli
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(EB) approach regardless of shear deformation. By contrast, in the present research work, we analyze the
transverse shear deformation on the basis of utilizing the Timoshenko beam approach. As long as the domain
is a nanoscale volume, the size-dependent mechanical response should be considered. The literature in [43,44]
used the surface elasticity hypothesis to address this scale-dependent reaction. Oppositely, in the current
paper and similar to [45–52], we handle stress/straindriven non-classical elasticity models conforming to the
nonlocal strain gradient size-dependent approach. Using this approach leads to investigating two concurrent
size-dependent nanomaterials’ behaviors: inhomogeneity distribution of atoms (material particles) and long-
range lattice interactions The first one occurs due to a large surface to the volume of atoms and the second
one arises concerning the long-range interatomic interaction among the whole atoms of the domain. It is
germane to note that the [43,44] applied both direct and converse magnetic fields; however, [45–52] and the
present article have taken the converse effect only.We keep the ends of the magnetic nanobeammathematically
in simply-supported boundary conditions through a numerical solving procedure. Up to our knowledge, the
literature has confirmed that FM behavior is completely size-dependent.

Moreover, the crucial achievements of [45–52] approved that the FM can cause more material stiffness.
Therefore, we aim to investigate the relevance between transverse shear deformation and the FM, which
is a novel study in the present scientific work and what follows In a point of fact, until now the FM has
been investigated on thin beam models only regardless of shear deformation [43–52]. Furthermore, the linear
mathematical model which is obtained by this study is solved through the medium of the Galerkin weighted
residual method The numerical results have appeared in line with the graphical figures and detailed parametric
diagrams.

2 Mathematical modeling

2.1 Fundamental calculations of the piezomagneticflexomagnetic (PFM) media

We begin the fundamental formulation of a PFM solid by assuming some restrictions acting as minute defor-
mations in an isothermal environment, referencing [12–14]. Thus, the magnetic field H and displacement u
are variables in the vector framework

u = u (x) , H = H (x) (1)

in which x defines a position vector.
We introduce the free energy density U defined within the flexomagneticity as follows

U = U (ε, η, H) = −1

2
H · a · H + 1

2
ε : C : ε + 1

2
η
...g

...η + ε : r ...η

−H · q : ε − H · f
...η (2)

in which “
...”, “:”, and “·” depict the inner (scalar) products in the spaces of third-order tensor, second-order

tensor and vectors, respectively.
The elastic strain and its gradient are expressed as

ε = 1

2

(
∇u + ∇uT

)
, η = ∇ε (3)

where ∇ is the 3D nabla operator
In what follows, we use the magnetic potential ψ related with H as

H = −∇ψ (4)

To study the FM on a static PM model, based on the virtual work principle, one can use the variational
approach ∫

V
δUdV = δA (5)

where δA is dedicated for performing the work of outer loads, V exhibits the domain volume occupied by FM
solid.
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Fig. 1 Geometrical details of a simply supported square figured beam

For simplicity, a standard relation for δA is introduced as

δA =
∫

V

F · δu +
∫

∂V

t · δuds (6)

in which t and F display the surface traction and external mass forces, respectively.
We illustrate the following equations based on Eq. (5) and calculus of variations

∇ · (σ − ∇ · ξ) + F = 0 (7a)

∇ · B = 0 (7b)

where B is a magnetic induction vector, and the constitutive relations of a PFM media can be established as

σ = ∂U

∂ε
≡ C : ε + r

...η − H · q (8a)

ξ = ∂U

∂η
≡ g : η + ε : r − H · f (8b)

B = − ∂U

∂H
= a · H + q : ε + f

...η (8c)

2.2 The PFM hard magnetic soft one-dimensional structure

This research tries to develop the FM studies on PM solids by accounting for the shear deformation of the
structure while both ends of the one-dimensional beam-shaped configuration are held in simple supports.
Regarding Fig. 1, a one-dimensional figured beam bridged by simple ends can be detected. Dimensions of the
beam are respectively assigned in the parametric framework by h and L for its thickness and effective length.

While a beam incorporates FMproperties, the constitutive relations (Eq. 8) are re-defined as follows [43,44]

σxx = C11εxx − q31Hz (9)

ξxxz = g31ηxxz − f31Hz (10)

Bz = a33Hz + q31εxx + f31ηxxz (11)

As the main scope of this paper is exerting transverse shear deformation in the PFM solid, we use the
Timoshenko model as follows [53,54]

u1 (x, z) = u (x) + zφ (x) (12a)

u3 (x, z) = w (x) (12b)
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In view of Lagrangian strain and as the present study addresses the linear stability of PFM nanoscale beams
thus

εi j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
(13)

On developing Eq. (13) based on Eq. (12), one obtains

εxx = du

dx
+ z

dφ

dx
(14a)

γxz = φ + dw

dx
(14b)

ηxxz = dεxx
dz

= dφ

dx
(14c)

Modifying the Lagrange principle (5) we came to

δ

∫
(
W + 
U ) = 0 (15)

where the given letters 
U and 
W state respectively the internal strain energy originated from mechanical
and magnetic sections, and mechanical work of external elements accomplished on the system.

The following relation can depict the whole strain energy of the beam

δ
U =
∫

V
(σxxδεxx + τxzδγxz + ξxxzδηxxz − BzδHz) dV (16)

Equilibrium equations and non-classical end supports conditions can be obtained after imposing the vari-
ational method on Eq. (16) as follows

δ
Mech
U1

= −
L∫

0

(
dNx

dx
δu + dQx

dx
δw − Qxδϕ + dMx

dx
δϕ + dTxxz

dx
δϕ

)
dx (17a)

δ

Mag
U2

= −
L∫

0

h/2∫

−h/2

dBz

dz
δ
dzdx (17b)

δ
Mech
U1

= (Nxδu + Qxδw + Mxδϕ + Txxzδϕ)|L0 (18a)

δ

Mag
U2

=
L∫

0

(Bzδ
)|h/2
−h/2 dx (18b)

where indices 1 and 2, respectively associated with the mechanical and magnetic parts, furthermore

Nx =
h/2∫

−h/2

σxxdz (19)

Mx =
h/2∫

−h/2

σxx zdz (20)

Qx = ks

h/2∫

−h/2

τxzdz (21)
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Txxz =
h/2∫

−h/2

ξxxzdz (22)

Taking external items such as loads and environmental effects results in mechanical work in the solid,
hence [55–58]


W = 1

2

L∫

0

N 0
x

(
dw

dx

)2

dx (23)

Then, the first variation of Eq. (23) can be produced as

δ
W =
L∫

0

(
N 0
x
dδw

dx

dw

dx

)
dx (24)

where N 0
x reveals in-plane pre-buckling force.

There is only a transverse component for the present media for the magnetic field determined as [59,60]

Hz + d


dz
= 0 (25)

Let us match the literature and embed the beam in a magnetic potential difference circuit so that the
maximum andminimummagnetic potentials are at the uppermost and lowest surfaces, respectively. Therefore,
the magnetic boundary conditions for a reverse PM impact besides closedcircuit yields [43,44]




(
+h

2

)
= ψ, 


(
−h

2

)
= 0 (26a-b)

By combining Eqs. (11), (17b), (18b), (25) and (26) together and making some mathematical processes
give the magnetic potential distribution in line with the thickness and component of the magnetic field as


 = q31
2a33

(
z2 − h2

4

)
dφ

dx
+ ψ

h

(
z + h

2

)
(27)

Hz = −z
q31
a33

dφ

dx
− ψ

h
(28)

The study of the structural properties of nanodomains, especially the accuratemeasurement of theirmechan-
ical response, has required complex tools. The ultrasmall size space is transferred into a continuum solid media
through some mathematical theorems to avoid using complicated equipment. These theoretical models can act
in two forms, integral or differential operators. However, we here employ a differential framework of one of
these models, which is famed as nonlocal strain gradient elasticity theory (NSGT) [61]

(
1 − μ

d2

dx2

)
σi j = Ci jkl

(
1 − l2

d2

dx2

)
εi j (29)

In other words, in constitutive relations for stress tensor (8a) we consider C as an integro-differential
operator related to Eq. (29).

The right side of the NSGT relation is assumed to project the strain gradient role. This part is significant
in the mechanics of micro/nanoscale deformable materials [62]. Further, the left side is considered to render
the nonlocality of atoms. Both parts involve extra parameters respectively μ as a nonlocal parameter and l as
a strain gradient parameter. It should be reminded that μ (nm)2 = (e0a)2 where e denotes a nonlocal quantity
and a indicates a characteristic internal length which can be the distance between the center of two neighbor
atoms. It should be remembered that the values of smallscale parameters that existed in NSGT vary in light
of several cases, such as the type of end supports In general, the values of these factors are not constant or an
associated value for each material [63–66].
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Putting Eqs. (14) and (27, 28) into Eqs. (9–11), and combining the obtained relations with Eq. (29), then,
respectively, the components of magnetic induction, axial stress, and shear stress can be obtained as

(
1 − μ

d2

dx2

)
ξxxz =

(
1 − l2

d2

dx2

)[(
g31 + q31 f31z

a33

)
dφ

dx
+ f31ψ

h

]
(30)

(
1 − μ

d2

dx2

)
σxx =

(
1 − l2

d2

dx2

)[
C11

du

dx
+ z

(
C11 + q231

a33

)
dφ

dx
+ q31ψ

h

]
(31)

(
1 − μ

d2

dx2

)
τxz =

(
1 − l2

d2

dx2

)[
GA

(
φ + dw

dx

)]
(32)

Nonlocal stress resultants can be obtained by substituting Eqs. (30–32) into Eqs. (19–22) [67–75]
(
1 − μ

d2

dx2

)
Nx =

(
1 − l2

d2

dx2

){
I1
du

dx
+ I4

}
(33)

(
1 − μ

d2

dx2

)
Mx =

(
1 − l2

d2

dx2

){
(I2 + I3)

dφ

dx

}
(34)

(
1 − μ

d2

dx2

)
Qx =

(
1 − l2

d2

dx2

){
H44

(
φ + dw

dx

)}
(35)

(
1 − μ

d2

dx2

)
Txxz =

(
1 − l2

d2

dx2

){
I5
dφ

dx
+ I6

}
(36)

in which the numerical expressions bring about

{I1, I2} =
h/2∫

−h/2

C11
{
1, z2

}
dz, I3 =

h/2∫

−h/2

q231z
2

a33
dz, I4 =

h/2∫

−h/2

ψq31
h

dz,

I5 =
h/2∫

−h/2

g31dz, I6 =
h/2∫

−h/2

ψ f31
h

dz, H44 = ks

h/2∫

−h/2

GAdz

After implementing Eqs. (17a) and (24) in Eq. (15), the equations which govern the PFM beam-shaped
solid can be developed by which the beam behaves statically in a local domain

dNx

dx
= 0 (37)

dQx

dx
+ N 0

x
d2w

dx2
= 0 (38)

dMx

dx
+ dTxxz

dx
− Qx = 0 (39)

This is the time to simplify Eqs. (33–36) in the nonlocal domain. To do this, by way of Eqs. (37–39), one
can derive

Nx =
(
1 − l2

d2

dx2

) {
I1
du

dx
+ I4

}
(40)

Mx = −μ

(
I5
d3φ

dx3
+ N 0

x
d2w

dx2

)
+

(
1 − l2

d2

dx2

){
(I2 + I3)

dφ

dx

}
(41)

Qx = −μ

(
N 0
x
d3w

dx3

)
+

(
1 − l2

d2

dx2

) {
H44

(
φ + dw

dx

)}
(42)

Txxz =
(
1 − μ

d2

dx2

)(
I5
dφ

dx
+ I6

)
(43)
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Let us re-write Eqs. (37–39) based on Eqs. (40–42) as

(
1 − l2

d2

dx2

) {
I1
d2u

dx2

}
= 0 (44)

(
1 − μ

d2

dx2

){
N 0
x
d2w

dx2

}
+

(
1 − l2

d2

dx2

){
H44

(
dφ

dx
+ d2w

dx2

)}
= 0 (45)

(
1 − μ

d2

dx2

){
I5
d2φ

dx2

}
−

(
1 − l2

d2

dx2

){
− (I2 + I3)

d2φ

dx2
+ H44

(
φ + dw

dx

)}
= 0 (46)

It is quite clear that Eq. (44) is independent of Eqs. (45) and (46). Therefore, to compute the system’s
stability capacity Eqs. (45) and (46) will be solved. It is vital to remember that if we consider μ = l or
μ = 0, l = 0, the local analysis is performed.

Now, the pre-buckling compressive axial forces can be written as

N 0
x = NMech + NMag (47)

for which one can dedicate the magnetic and mechanical parts as NMag and NMech respectively.

NMech = −Pcr (48)

NMag = −q31ψ (49)

3 Solution process

Buckling equations are solved based on various methods. In between these solution techniques well-known
ones can refer to the Galerkin weighted residual method (GWRM) which is a simple one involving a fast
solution time [56]. To proceed with this method, the unknown functions w (x) and φ (x) can be chosen as

w (x) =
N∑

m=1

am (x) (50)

φ (x) =
N∑

m=1

bm (x) (51)

The existed functions am (x) and bm (x) based on the GWRM are expanded as

am =
L∫

0

Wm (x) Xmdx (52)

bm =
L∫

0

�m (x) Xmdx (53)

Pertained to simple end conditions (SS), Wm and �m are trigonometric functions as

Wm (x) = sin
(π

L
x
)

(54)

�m (x) = cos
(π

L
x
)

(55)

Manipulating and simplifying Eqs. (45) and (46) and combining it with Eq. (23), then based on Eqs. (50)
and (51) and associating m = 1, the linear analytical stability equation of the PFM beam-like nano solid can
be achieved.
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4 Discussion and numerical results

4.1 Results validation

The verification section is here conducted to devote the exactness of the solution process. This part of the
study is divided into two divisions. The first validation (Table 1) corresponds to Euler–Bernoulli (EB) and
Timoshenko (TB) common nanobeams based on nonlocal effects only. The TB results are then compared with
the EB ones in Table 2 owing to the PFM nanoscale beams by comparing results of EB small size beam with
TB on the basis of substituting physical quantities in Table 3 [43,44].

The listed results in Table 1 represent that the difference between TB with EB tends to be shorter while
increasing the value of the nonlocal parameter. What is more, no one can see any conflicts between present TB
with those of [76]. In another investigation adjusted by Table 2, it is mentionable that the difference between
the stability amounts of TB versus EB has become smaller. This smaller difference is observed while μ is
increasing and the structure is PFM. In fact, the nonlocal parameter effect except decreasing the stiffness of
the nanostructure deactivates the influence of shear deformations and then brings the EB and TB close to each
other. Ultimately, on the basis of these prepared tables, one can say that a very good accuracy and agreement
are revealed for the employed solving technique.

4.2 Buckling analysis

In this article, the static linear buckling analysis of a piezo-flexomagnetic (PFM) nanobeam is probed to
understand the flexomagnetic property moreWe will determine the effectiveness of FM for a shear deformable
structure in the ultrasmall size. Thevalues of small scale parameters havebeengotten as 0.5 nm < e0a < 0.8 nm
[77], and 0 < e0a � 2 nm [78,79]. The value of the strain gradient parameter has been estimated as same as
the lattice number of the examined nanostructure as l = 1 nm.

In the results section, by maneuvering on the dimensionless relationship of length to beam thickness (L/h),
we try to evaluate the difference between the results of EB and TB beams in both local and nonlocal phases.
Since this dimensionless ratio directly determines the importance of shear deformations (it was seen that in
small values of this coefficient, the beam is thicker and the shear deformations are further important), the aim
is to determine the effect of shear deformations on beams with FM property to know whether FM will be more
important considering the shear deformation.

First, in order to evaluate the different cases, Figs. 2 and 3 represent the problem by focusing on the
nonlocal parameter and the strain gradient, respectively. With the help of Fig. 2, it is quite obvious that the
thinner the beam, the less important the shear deformation in the smart beam. However, the process of reducing
the results in the local beam (e0a = 0) will be on a steep slope. In fact, the nonlocal parameter and the shear
deformation effect directly impressed each other. When the value of the nonlocal coefficient is other than zero
(e0a = 2nm), the difference between the results of EB and TB decreases. Thus, it can be stated that the local
solution (e0a = 0) of the nanostructures will lead to a more gap in the difference between the results of EB and
TB. In Fig. 3, it can be seen that by increasing the value of the strain gradient parameter, the stiffer the material,
the greater the difference between the EB and TB results. From these two diagrams, it can be concluded that
the stiffer the material and its structure, the more important the shear deformations seem.

Figure 4 is based on changes in the value of the strain gradient parameter. Both EB and TB consist of two
modes. The first mode is the PM beam and the second mode is the PFM beam. The result of the critical load for
the EB-PFM at l = 0 is 2.836nN and at l = 2nm is 3.6876nN. Also for TB-PFM is 2.7757nN and 3.6055nN,
respectively. But we see that for PM beam in EB mode is 2.7373nN and 3.5889nN, respectively, and in TB
mode is 2.6821nN and 3.5119nN. Therefore, considering the large values of the strain gradient parameter, we
see that the difference between the results of EB-PM and TB-PM will be less than those of the EB-PFM with
TB-PFM. It can be said that the strain gradient parameter affects the PFM beam more than the PM beams. A
physical reason may be that the piezo-flexomagnetic material is stiffer than the piezo material.

According to Fig. 5, we have tried to compare EB and TB in piezo and piezo-flexomagnetic modes by
considering the numerical changes of the slenderness parameter (L/h). For this purpose, we assessed the beam
in the thicker zone. It shall be reminded that the results of TB are not accurate enough in the very thick
range, and TB theory is often suitable for beams with 6 < L/h, and also in the case of EB for 10 < L/h.
According to the diagram and in the thicker mode of the beams, it is observed that the critical load for the
EB-PM beam is 12.615nN and for the TB-PM is 11.471nN, in contrast to EB-PFM is 13.009nN and for
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Table 2 Comparison of the critical buckling load of the piezomagnetic-flexomagnetic CFO nanostructure for EB and TB (l =
1 nm, ψ = 1mA, SS)

PCr (nN)

L/h μ = 0 nm2 μ = 1 nm2 μ = 2 nm2

EB TB EB TB EB TB

10 3.2828 3.2111 3.0489 2.9832 2.8536 2.7928
12 2.4074 2.3734 2.2946 2.2627 2.1954 2.1652
14 1.9007 1.8825 1.8398 1.8225 1.7845 1.7679
16 1.5803 1.5697 1.5446 1.5344 1.5115 1.5016
18 1.3645 1.3579 1.3422 1.3358 1.3212 1.3150
20 1.2121 1.2078 1.1974 1.1933 1.1835 1.1794
22 1.1003 1.0974 1.0903 1.0875 1.0807 1.0779
24 1.0159 1.0139 1.0089 1.0069 1.0021 1.0001
26 0.9506 0.9491 0.9455 0.9440 0.9405 0.9390
28 0.8990 0.8978 0.8951 0.8941 0.8914 0.8903
30 0.8575 0.8566 0.8546 0.8537 0.8517 0.8509

Table 3 Properties of the magnetic nanoparticle

CoFe2O4 (CFO)

C11 = 286GPa
ν = 0.32
q31 = 580.3N/A m
a33 = 1.57 × 10−4 N/A2

A=Ampere
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Fig. 2 Nonlocal parameter versus EB and TB for COF nanostructure (l = 1 nm, ψ = 1mA)

TB-PFM beam is 11.793nN. Therefore, it can be stated that the difference between the results of EB and TB
in piezo-flexomagnetic mode is greater than those of piezomagnetic mode. Of course, the literature [43,52]
reported that FM is dominant in thinner structures. However, as a result of this study, one can conclude that
the flexomagnetic effect will lead to the greater importance of shear deformations in thicker nanobeams.

Figure 6 is drawn to show a pure mechanical response of the nanoscale beam (NB) compared with PM
and PFM for both EB and TB. The NB excludes magnetic and also the FM properties. It is tried to sketch the
beams from a thick beam up to a moderately thick beam. As seen, the NB has the least mechanical stability in
comparison with the PM and PFM nanobeams. Interestingly, in an analogy between NB with PFM, and PM,
it can be observed that the results of the EB-NB would be matched with those of TB-NB sooner than other
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cases. From L/h = 11, the results of EB and TB for NB are so closed to each other. However, this does not
apply to magnetic cases. It means the importance of shear deformation will be increased in piezomagnetic-
flexomagnetic domains.

5 Conclusions

This work aimed to extend the shear deformation effect on the flexomagneticity response of a piezomagnetic
ultrasmall scale elastic beam. We established the governing equations by using the Timoshenko beam. The
nonlocal mechanics of the nanobeam was concerned with the nonlocal strain gradient approach by which we
are able to transfer the discretize atomic lattice into a continuum region. The solution of the obtained equations
corresponded to a closedform solution within which the numerical results were reported for simply supported
end support. We organized some tabulated verifications to corroborate the numerical results. Based on the
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detailed parametric study and from an engineering perspective, this work provides some new attainments and
outcome remarks as

• The stiffer structure leads to the further remarkable of shear deformations
• The lesser the values of the nonlocal parameter, the more marked the shear deformations
• The larger the values of the strain gradient parameter, the more considerable the shear deformations
• For the smart nanobeams, the FMwill affect the existence of shear deformations and the effect is to increase
its importance.
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